Úlohy: 1–20 / 166

1. Doprava na exkurzi

Ředitel pořádá exkurzi pro více než 400 studentů. Odvoz již zajistil pro 280 studentů. Každý školní autobus má kapacitu pro přepravu 40 studentů.

Vypočítejte, kolik školních autobusů je ještě potřebných pro přepravu všech studentů.
Řešení
Pro přepravu zbývajících studentů jsou potřeba ještě 3 školní autobusy.

2. Hodnota výrazu

Vypočítej hodnotu výrazu y = 3x22x + 3 pro:
a)   x = -2,
b)   x = 1,
c)   x = 0,
d)   x = 0,50.
Řešení
a)   19
b)   -2
c)   3
d)   2,75

3. Oslava narozenin tety a srýce

Strýc Anety má narozeniny ve stejný den v roce jako Anetčina teta. Strýc je starší než teta, ne však o víc než o 10 let, a oba jsou plnoletí (starší než 18 let). Na poslední oslavě jejich narozenin si Aneta uvědomila, že když vynásobí jejich oslavované věky a výsledný součin ještě vynásobí počtem psů, kteří se na oslavě sešli, dostane číslo 2 024.

Určete. kolik psů mohlo být na této oslavě. (Uveďte všechny možnosti.)
Řešení
Na oslavě může být 1 pes nebo 4 psi.

4. Poměr stran obdélníku

Obdélník má obvod 30 cm. Poměr délky a šířky je 2:3.

Vypočítejte:
a)   délku obdélníku v cm,
b)   šířku obdélníku v cm,
c)   obsah obdélníku v cm2.
Řešení
a)   Délka obdélníku měří 6 cm.
b)   Délka obdélníku měří 9 cm.
c)   Obsah obdélníku je 54 cm2.

5. Průměrné body z testu

Frantovi se z posledního testu podařilo získat 40 bodů ze 60 možných. Jeho průměrný počet bodů ze všech testů tím vzrostl z 27 na 28 bodů.

Vypočítejte, na kolik bodů měl Franta test napsat, aby jeho celkový průměr vzrostl až na 29 bodů.
Řešení
Franta měl test napsat na 53 bodů.

6. Aritmeticky průměr

Jsou dána čísla 5, 8, 13, 15, 17 a 19.

Určete, jaké číslo je třeba přidat, aby byl aritmeticky průměr 16.
Řešení
Je třeba přidat číslo 35 .

7. Vystřižené rovnoramenné trojúhelníky

Jsou dány dva shodné rovnoramenné trojúhelníky, z nichž každý má obvod 100 cm. Nejprve z těchto trojúhelníků složíme rovnoběžník tak, že je k sobě přiložíme rameny. Poté z nich složíme kosočtverec tak, že je k sobě přiložíme základnami. Rovnoběžník má o 4 cm kratší obvod než kosočtverec.

Vypočítejte délky stran trojúhelníků.
Řešení
Základna má délku 32 cm, rameno má délku 34 cm.

8. Turista na cestě

Turista šel cesty rychlostí 6 km/hod, cesty rychlostí 4 km/hod a zbývajících 7 km rychlostí 5 km/hod.

Vypočítejte:
a)   kolik kilometrů turista ušel,
b)   kolik minut mu trvala cesta.
Řešení
a)   Turista ušel 20 kilometrů.
b)   Cesta mu trvala 254 minut.

9. Plnící linky v mlékárně

V mlékárně mají dvě linky pro plnění krabic mléka. Nová linka je o 50 % rychlejší, než stará linka. Když pracují obě linky současně, naplní běžné denní množství krabic mléka o 6 hodin dříve, než když pracovala pouze stará linka.

Vypočítejte, za jak dlouho naplní denní množství krabic mléka, bude-li pracovat:
a)   pouze stará linka,
b)   pouze nová linka,
c)   obě linky současně.
Řešení
a)   Bude-li pracovat pouze stará linka, naplní denní množství krabic za 10 hodin a 0 minut.
b)   Bude-li pracovat pouze nová linka, naplní denní množství krabic za 6 hodin a 40 minut.
c)   Budou-li pracovat obě linky současně, naplní denní množství krabic za 4 hodin a 0 minut.

10. Vypočítejte rovnici

Vypočítejte rovnici a udělejte zkoušku.
Řešení
x = 4

11. Protijedoucí auta

Města A a B jsou od sebe vzdálená 520 km. Z města A vyjelo auto rychlostí 60 km/h a z města B v tentýž okamžik druhé auto rychlosti 100 km/h.

Vypočítejte:
a)   za jak dlouho se auta setkají,
b)   jak daleko od místa A se setkají.
Řešení
a)   Auta se setkají za 3 hodiny 15 minut
b)   Auta se setkají 195 km od místa A.
c)   

12. Výška pravidelného čtyřbokého jehlanu

Pravidelný čtyřboký jehlan má objem 2 160 litrů a délku podstavné hrany 12 dm.

Vypočítejte výšku jehlanu.
Řešení
Výška jehlanu je 45 dm.

13. Peníze Soni, Emy a Zuzany

Soňa a Ema mají dohromady 200 Kč, Ema a Zuzana mají dohromady 150 Kč, Soňa se Zuzanou mají dohromady 190 Kč.

Vypočítejte, kolik Kč má Soňa, kolik Ema a kolik Zuzana.
Řešení
Soňa má 120 Kč, Ema má 80 Kč a Zuzana má 70 Kč.

14. Cesta brouků za listem

Brouk John vyrazil z domu směrem k zelnému listu rychlostí 20 m/min. O dvě minuty později se za ním vydal brouk Ringo rychlostí 24 m/min. Oba přišli ke zelnému listu současně.

Vypočítejte jak daleko ležel zelný list od jejich domu.
Řešení
Zelný list ležel 240 metrů od jejich domu.

15. Praní prádla

Roman a Tomáš si dnes prali prádlo. Ronald peří každých 6 dní a Tim každých 9 dní.

Vypočítejte, kolik dní bude trvat, než Roman a Tomáš budou prát tentýž den.
Řešení
Bude to trvat 18 dní.

16. Kužel a válec

Rotační válec má objem 120 dm3. Rotační kužel má stejně velký objem i poloměr podstavy jako rotační válec.

Vypočítejte, o kolik procent je větší výška rotačního kužele než výška rotačního válce.
Řešení
Výška rotačního kužele je větší o 200 %.

17. Čtenářka Denisa

Denisa přečetla knihu za 4 dny. První den přečetla třetinu knihy, druhý den šestinu knihy, třetí den polovinu ze zbývajících stran. Na poslední den jí zbylo ještě 30 stran.

Vypočítejte:
a)   kolik stran měla celá kniha,
b)   kolik stran přečetla Dana třetí den.
Řešení
a)   Kniha měla 120 stran.
b)   Třetí den Denisa přečetla 30 stran.

18. Řezání dřevěné tyče

Dřevěná tyč byla rozřezána na tři části. První část měřila jednu třetinu délky, druhá jednu třetinu zbytku a třetí část 20 cm.

Vypočítejte:
a)   v cm původní délku tyče,
b)   v cm délky jednotlivých částí.
Řešení
a)   Původní délka tyče byla 45 cm.
b)   První část měřila 15 cm, druhá část 10 cm a třetí část 20 cm.

19. Bratrův věk

Bratr bude za 10 let třikrát starší než dnes.

Vypočítejte, kolik má dnes bratr let.
Řešení
Bratr má dnes 5 let.

20. Po sobě jdoucí čísla

Součet tří po sobě jdoucích čísel je 183.

Určete, o jaká čísla jde.
Řešení
Jsou to čísla 60, 61 a 62.