Úlohy: 241–260 / 306

241. Část přímého úhlu

Vypočtěte, kolik procent přímého úhlu představuje úhel α o velikosti α = 72 °.
Řešení
Úhel α představuje 40 % přímého úhlu.
Matematická úloha – Část přímého úhlu

242. Část plného úhlu

Vypočtěte velikost úhlu, který je 45 % plného úhlu.
Řešení
Velikost úhlu je 162 °.
Matematická úloha – Část plného úhlu

243. Procenta části celku

Vypočtěte, kolik procent je čtvrtina dvou pětin celku.
Řešení
Čtvrtina dvou pětin celku je 10 %.
Matematická úloha – Procenta části celku

244. Řezání tyčí

Tři tyče o délkách 24 dm, 3 m a 160 cm mají být rozřezány na stejně dlouhé části tak, aby byly co nejdelší.

Vypočtěte, kolik cm měří jedna část.
Řešení
Jedna část měří 20 cm.
Matematická úloha – Řezání tyčí

245. Pravidelný šestiúhelník

Je dán pravidelný šestiúhelník ABCDEF.

Určete velikost úhlu AFC.
Řešení
Velikost úhlu AFC = 60 °
Matematická úloha – Pravidelný šestiúhelník

246. Součet prvočísel

Vypočtěte součet všech prvočísel větších než 10 a menších než 20.
Řešení
Součet je 60.
Matematická úloha – Součet prvočísel

247. Zvětšení lupy

Zvětšení lupy je 4násobné.

Vypočtěte, o kolik procent zvětšuje lupa.
Řešení
Lupa zvětšuje o 300 %.
Matematická úloha – Zvětšení lupy

248. Zlevnění a zdražení notebooku

Notebook před byl zdražen o 15 % a nyní ho doprodávají za 13 800 Kč, což je 80 % zdražené ceny.

Vypočtěte, jaká byla původní cena notebooku před zdražením.
Řešení
Cena notebooku před zdražením byla 15 000 Kč.
Matematická úloha – Zlevnění a zdražení notebooku

249. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.
Matematická úloha – Tříciferná čísla

250. Procenta

U každé z následujících úloh vyberte z nabídky správné řešení:
a)   Šaty byly zdraženy z 800 Kč na 1 000 Kč. O kolik procent byly šaty zdraženy?
b)   Šaty byly zlevněny z 1 500 Kč na 450 Kč. Kolik procent tvoří nová cena z původní ceny šatů?
c)   Šaty byly zdraženy o dvě pětiny své hodnoty. O kolik procent byly zdraženy?
Řešení
a)   20 %
b)   25 %?1
c)   30 %?2
d)   33 %
e)   40 %?3
f)   60 %
Matematická úloha – Procenta

251. Dvě části cesty

Cesta má dvě části v celkové délce 190 metrů. Delší část cesty je o 10 metrů kratší než trojnásobek délky kratší části cesty.

Rozhodněte o každém z následujících tvrzení, zda je pravdivé, či nikoli.
a)   Delší část cesty má délku 140 metrů.
b)   Délky obou částí cesty jsou v poměru 1 : 3.
c)   Delší část cesty je o 90 metrů delší než kratší část.
Řešení
a)   1
b)   0
c)   1
Matematická úloha – Dvě části cesty

252. Kachličky v koupelně

Podlaha koupelny má tvar obdélníku o rozměrech 2 metry a 2,50 metru. Je v ní vana o rozměrech dna 150 cm a 60 cm. Zbytek podlahy je pokryt krásnými kachličkami.

Vypočtěte, na kolika metrech čtverečních jsou kachličky.
Řešení
Kachličky jsou na ploše 4,10 m2.
Matematická úloha – Kachličky v koupelně

253. Města a obce na mapě

Měřítko mapy je 1:100 000. Vzdušná vzdálenost mezi dvěma městy měří na mapě 25 cm. Vzdálenost dvou obcí ve skutečnosti je 8 km.

Vypočtěte:
a)   jaká je vzdálenost mezi městy ve skutečnosti,
b)   jaká je vzdálenost mezi obcemi na mapě.
Řešení
a)   Města jsou vzdálena 25 km.
b)   Vzdálenost mezi obcemi na mapě je 8 cm.
Matematická úloha – Města a obce na mapě

254. Lístky do kina

Lístek do kina stál 120 Kč. Potom ho zdražili o tři osminy z původní ceny.

Vypočtěte, kolik lístků po zdražení koupíme za 660 Kč.
Řešení
Koupíme 4 lístky.
Matematická úloha – Lístky do kina

255. Volavky

Na tři kolonie – hnízdiště – přiletělo 380 volavek. Na kolonii u rybníka přiletělo o 76 volavek více než na kolonii za lesem. Na kolonii u louky přiletělo o 114 volavek více než na kolonii u rybníka.

a)   Vypočtěte, kolik volavek přiletělo na kolonii u rybníka.
b)   Vypočtěte, kolik volavek přiletělo na kolonii za lesem.
c)   Vypočtěte, kolik volavek přiletělo na kolonii u louky.
Řešení
a)   Na kolonii u rybníka přiletělo 114 volavek.
b)   Na kolonii za lesem přiletělo 38 volavek.
c)   Na kolonii u louky přiletělo 228 volavek.
Matematická úloha – Volavky

256. Jablka v košíku

V košíku je pět červených jablek průměrné hmotnosti 125 gramů a jedno žluté jablko. Průměrná hmotnost všech jablek v košíku je 120 gramů.

Určete v gramech hmotnost žlutého jablka.
Řešení
Hmotnost žlutého jablka je 95 g.
Matematická úloha – Jablka v košíku

257. Látka na sedačky

Vypočtěte, kolik m2 látky bude potřeba na potažení 12 sedaček tvaru krychle o hraně 40 cm.
Řešení
Bude potřeba 11,52 m2 látky.
Matematická úloha – Látka na sedačky

258. Povinné minimální rezervy

Vypočtěte jaké minimální množství peněz musí banka držet v hotovosti z vkladu 5 500 €, jestliže úroveň povinných minimálních rezerv je 2,15 %. (Výsledek zapište na dvě desetinná místa.)
Řešení
Povinné minimální rezervy činí 118,25 €.
Matematická úloha – Povinné minimální rezervy

259. Sestavení krychle

Vypočtěte, z kolika krychlí o hraně 5 cm lze vytvořit krychli o hraně 25 cm.
Řešení
Lze to z 125 krychlí.
Matematická úloha – Sestavení krychle

260. Hnojivo

Do 40 litrů vody je potřeba dát 0,60 litrů hnojiva.

Vypočtěte, kolik hnojiva je potřeba dát do 10 litrů vody.
Řešení
Je potřeba 0,15 litrů vody.
Matematická úloha – Hnojivo