Úlohy: 1–20 / 22

12

1. Derivace složených funkcí

Určete derivace následujících funkcí:
a)   \( f_1(x) = \sin(3x^2) \)
b)   \( f_2(x) = \ln(\cos(x^2)) \)
c)   \( f_3(x) = e^{x^3} \)
d)   \( f_4(x) = \sqrt{2x^5 + 1} \)
e)   \( f_5(x) = \tan(\ln(x)) \)
f)   \( f_6(x) = \frac{1}{x^2 + e^{2x}} \)
g)   \( f_7(x) = \sin(\sqrt{x}) \)
h)   \( f_8(x) = \frac{\ln(x)}{x^3} \)
Řešení
a)   \[ f_1'(x) = \cos(3x^2) \cdot 6x \]
b)   \[ f_2'(x) = -2x \cdot \tan(x^2)\]
c)   \[ f_3'(x) = e^{x^3} \cdot 3x^2 \]
d)   \[ f_4'(x) = \frac{5x^4}{\sqrt{2x^5 + 1}} \]
e)   \[ f_5'(x) = \frac{1}{x \cdot \cos^2(\ln(x))} \]
f)   \[ f_6'(x) = -\frac{2x + 2e^{2x}}{(x^2 + e^{2x})^2} \]
g)   \[ f_7'(x) = \frac{\cos(\sqrt{x})}{2\sqrt{x}} \]
h)   \[ f_8'(x) = \frac{1 - 3\ln(x)}{x^4} \]

2. Derivace polynomů

Určete derivace funkcí:
a)   \( f_1(x) = 3x^4 - 5x^3 + 2x^2 - x + 7 \)
b)   \( f_2(x) = -2x^5 + 4x^4 - x^3 + 6x^2 - 3x \)
c)   \( f_3(x) = 5x^3 - 7x^2 + x - 8 \)
d)   \( f_4(x) = -x^5 + 3x^4 - 2x^2 + x - 4 \)
e)   \( f_5(x) = 6x^4 - 5x^3 + 4x - 9 \)
f)   \( f_6(x) = -4x^5 + x^3 - 3x^2 + 7x \)
g)   \( f_7(x) = 3x^4 - x^2 + 2x - 1 \)
h)   \( f_8(x) = 5x^5 - 3x^4 + x^2 - 6 \)
Řešení
a)   \( f'_1(x) = 12x^3 - 15x^2 + 4x - 1 \)
b)   \( f'_2(x) = -10x^4 + 16x^3 - 3x^2 + 12x - 3 \)
c)   \( f'_3(x) = 15x^2 - 14x + 1 \)
d)   \( f'_4(x) = -5x^4 + 12x^3 - 4x + 1 \)
e)   \( f'_5(x) = 24x^3 - 15x^2 + 4 \)
f)   \( f'_6(x) = -20x^4 + 3x^2 - 6x + 7 \)
g)   \( f'_7(x) = 12x^3 - 2x + 2 \)
h)   \( f'_8(x) = 25x^4 - 12x^3 + 2x \)

3. Průsečík lineárních funkcí

Určete průsečík grafů lineárních funkcí:
a)   \( f_1(x) = 4x - 3 \), \( f_2(x) = -x + 2 \)
b)   \( f_1(x) = 4x - 1 \), \( f_2(x) = 2x + 5 \)
c)   \( f_1(x) = 3x + 2 \), \( f_2(x) = 3x + 5 \)
d)   \( f_1(x) = -x + 4 \), \( f_2(x) = 2x - 2 \)
e)   \( f_1(x) = -10x - 14 \), \( f_2(x) = -10x - 14 \)
f)   \( f_1(x) = x - 3 \), \( f_2(x) = -2x + 1 \)
g)   \( f_1(x) = -3x + 6 \), \( f_2(x) = x + 2 \)
h)   \( f_1(x) = 2x - 4 \), \( f_2(x) = -x + 5 \)
Řešení
a)   [1, 1]
b)   [3, 11]
c)   nemá řešení
d)   [2, 2]
e)   nekonečně mnoho řešení
f)   [ \(\frac{4}{3}\), \(-\frac{5}{3}\) ]
g)   [1, 3]
h)   [3, 2]

4. Průsečíky s osami

Vypočítejte průsečíky s osou \(x\) a osou \(y\) u grafů následujících funkcí.
a)   \( y = 2x - 6 \)
b)   \( y = -3x + 9 \)
c)   \( y = \frac{1}{2}x - 4 \)
d)   \( y = -5x + 15 \)
e)   \( y = 4x + 8 \)
f)   \( y = 7x \)
g)   \( y = 5 \)
h)   \( y = -2x + 10 \)
Řešení
a)   \( P_x = [3, 0]; P_y = [0, -6]; \)
b)   \( P_x = [3, 0]; P_y = [0, 9]; \)
c)   \( P_x = [8, 0]; P_y = [0, -4]; \)
d)   \( P_x = [3, 0]; P_y = [0, 15]; \)
e)   \( P_x = [-2, 0]; P_y = [0, 8]; \)
f)   \( P_x = [0, 0]; P_y = [0, 0]; \)
g)   \( P_{x} \text{ neexistuje}; P_y = [0, 5]; \)
h)   \( P_x = [5, 0]; P_y = [0, 10]; \)

5. Hodnota výrazu

Vypočítej hodnotu výrazu y = 3x22x + 3 pro:
a)   x = -2,
b)   x = 1,
c)   x = 0,
d)   x = 0,50.
Řešení
a)   19
b)   -2
c)   3
d)   2,75

6. Definiční obor funkcí 1

Určete definiční obory \( D_f \) následujících funkcí:
a)   \[ f(x) = \frac{1}{x - 2} \]
b)   \[ g(x) = \sqrt{5 - x} \]
c)   \[ h(x) = \ln(x + 3) \]
d)   \[ k(x) = \frac{\sqrt{x + 1}}{x - 4} \]
e)   \[ m(x) = \sqrt{3x + 9} \]
f)   \[ n(x) = \frac{\ln(x)}{x^2 - 1} \]
Řešení
a)   \[ D_f = (-\infty, 2) \cup (2, \infty).\]
b)   \[ D_g = (-\infty, 5\rangle.\]
c)   \[ D_h = (-3, \infty).\]
d)   \[ D_k = \langle -1, 4) \cup (4, \infty).\]
e)   \[ D_m = \langle -3, \infty).\]
f)   \[ D_n = (0, 1) \cup (1, \infty).\]

7. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   

8. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   

9. Průběh funkce

Je dána funkce

Určete:
a)   definiční obor funkce f,
b)   obor hodnot funkce f,
c)   průsečík grafu funkce f s osou y (pokud existuje),
d)   průsečíky grafu funkce f s osou x (pokud existují),
e)   zda je funkce f sudá nebo lichá,
f)   zda je funkce f periodická,
g)   zda je funkce f prostá,
h)   zda je funkce f ohraničená zdola nebo shora,
i)   intervaly spojitosti funkce f,
j)   první derivaci funkce,
k)   druhou derivaci funkce,
l)   stacionární body,
m)   lokální extrémy funkce,
n)   v kterých intervalech funkce f roste,
o)   v kterých intervalech funkce f klesá,
p)   inflexní body,
q)   intervaly konvexnosti funkce,
r)   intervaly konkávnosti funkce,
s)   asymptoty funkce (pokud existují),
t)   limity na hranicích definičního oboru,
u)   načrtněte graf funkce.
Řešení
a)   Definiční obor
b)   Obor hodnot
c)   Průsečík s osou y je .
d)   Průsečíky s osou x jsou , .
e)   Funkce f není ani sudá ani lichá.
f)   Funkce f není periodická.
g)   Funkce f není prostá.
h)   Funkce f není ohraničená zdola nebo shora.
i)   Intervaly spojitosti funkce f jsou , , .
j)   
k)   
l)   Funkce f nemá stacionární body.
m)   Funkce f nemá lokální extrémy.
n)   Funkce f není rostoucí na žádném intervalu.
o)   Funkce f je klesající na intervalech , , .
p)   Inflexní bod funkce f je .
q)   Funkce f je konvexní na intervalech .
r)   Funkce f je konkávní na intervalech .
s)   Asymptoty funkce f jsou , a .
t)   Limity na hranicích def. oboru jsou
, , , , , .
u)    Vyšetřování průběhu funkce

10. Lineární funkce s absolutní hodnotou

Narýsujte graf funkce:
a)   
b)   
c)   
Řešení
a)    Lineární funkce s absolutní hodnotou
b)    Lineární funkce s absolutní hodnotou
c)    Lineární funkce s absolutní hodnotou

11. Kvadratické funkce s absolutní hodnotou

Načrtněte graf funkce:
a)   
b)   
c)   
Řešení
a)    Kvadratické funkce s absolutní hodnotou
b)    Kvadratické funkce s absolutní hodnotou
c)    Kvadratické funkce s absolutní hodnotou

12. Kvadratické funkce s absolutní hodnotou

Narýsujte graf funkce:
a)   
b)   
c)   
Řešení
a)    Kvadratické funkce s absolutní hodnotou
b)    Kvadratické funkce s absolutní hodnotou
c)    Kvadratické funkce s absolutní hodnotou

13. Lineární funkce s absolutní hodnotou

Narýsujte graf funkce:
a)   
b)   
c)   
d)   
Řešení
a)    Lineární funkce s absolutní hodnotou
b)    Lineární funkce s absolutní hodnotou
c)    Lineární funkce s absolutní hodnotou
d)    Lineární funkce s absolutní hodnotou

14. Funkce s absolutní hodnotou

Narýsujte graf funkce.
a)   
b)   
c)   
d)   
Řešení
a)    Funkce s absolutní hodnotou
b)    Funkce s absolutní hodnotou
c)    Funkce s absolutní hodnotou
d)    Funkce s absolutní hodnotou

15. Rovnice funkce

Jsou dány dva body.

Určete rovnici lineární funkce procházející těmito body.
a)   A[–2;–5], B[2;1]
b)   A[–4;1], B[3;1]
c)   A[–3;6], B[6;3]
d)   A[–1;4], B[2;7]
e)   A[–1;–7], B[4;3]
f)   A[–1;–2], B[–1;0]
g)   A[-3;6], B[0;3]
h)   A[–1;–3], B[2;6]
Řešení
a)   
b)   
c)   
d)   
e)   
f)   nemá řešení
g)   
h)   

16. Vlastnosti funkce

Je dána funkce f:

Určete:
a)   definiční obor funkce f
b)   obor hodnot funkce f
c)   průsečík grafu funkce f s osou y (pokud existuje)
d)   průsečíky grafu funkce f s osou x (pokud existují)
e)   zda je funkce f sudá nebo lichá
f)   v kterých intervalech funkce f roste
g)   v kterých intervalech funkce f klesá
h)   zda je funkce f prostá
i)   inverzní funkci k funkci f
j)   načrtněte graf funkce
Řešení
a)   Definiční obor funkce je
b)   Obor hodnot funkce je
c)   Průsečík s osou y je
d)   Průsečík s osou x je
e)   Funkce f není ani sudá ani lichá
f)   Funkce f je rostoucí v intervalu
g)   Funkce f není klesající.
h)   Funkce f je prostá.
i)   Inverzní funkce k funkci f je
j)    Graf funkce

17. Vlastnosti funkce

Je dána funkce f:

Určete:
a)   definiční obor funkce f
b)   obor hodnot funkce f
c)   průsečík grafu funkce f s osou y (pokud existuje)
d)   průsečíky grafu funkce f s osou x (pokud existují)
e)   zda je funkce f sudá nebo lichá
f)   v kterých intervalech funkce f roste
g)   v kterých intervalech funkce f klesá
h)   zda je funkce f prostá
i)   inverzní funkci k funkci f
j)   načrtněte graf funkce
Řešení
a)   Definiční obor funkce je
b)   Obor hodnot funkce je
c)   Průsečík s osou y je
d)   Průsečík s osou x je
e)   Funkce f není ani sudá ani lichá
f)   Funkce f je rostoucí v intervalu
g)   Funkce f není klesající.
h)   Funkce f je prostá.
i)   Inverzní funkce k funkci f je
j)    Graf funkce

18. Body kvadratické funkce

Je dána funkce .

Určete všechna reálná čísla z tak, aby platilo g(x) = g(-2).
Řešení
x = –2 a x = 6

19. Graf lineární funkce

Načrtněte graf funkce
a)   
b)   
c)   
d)   
Řešení
a)    Lineární funkce
b)    Lineární funkce
c)    Lineární funkce
d)    Lineární funkce

20. Body náležící kvadratické funkci

Jsou dány body A[0;-6], B[2;-4] a C[3;6]. Tyto body náleží kvadratické funkci.

Určete obecnou rovnici této kvadratické funkce.
Řešení
 
12