Úlohy: 1–20 / 28

12

1. Pozemek ve tvaru lichoběžníku

Pozemek má tvar pravoúhlého lichoběžníku se základnami 21 m a 11,20 m. Při ceně 2 500 Kč za metr čtvereční je hodnota pozemku vyčíslena na 1 352 400 korun.

Vypočítejte, kolik metrů pletiva je potřeba k oplocení tohoto pozemku.
Řešení
Pro oplocení tohoto pozemku je potřeba 100,80 metrů pletiva.

2. Vlastnosti rovnoramenného trojúhelníku

V rovnoramenném trojúhelníku je délka ramene 25 cm, výška trojúhelníku je 24 cm.

Vypočítejte:
a)   délku základny v centimetrech,
b)   obvod trojúhelníku v centimetrech,
c)   obsah trojúhelníku v centimetrech čtverečných.
Řešení
a)   Délka základny je 14 cm.
b)   Obvod trojúhelníku je 64 cm.
c)   Obsah trojúhelníku je 168 cm².

3. Stoupání železniční tratě

Železniční trať má v úseku 1,50 kilometru převýšení 22,50 metru.

Vypočítejte v promile stoupání železniční tratě.
Řešení
Železniční trať má stoupání 15 promile.

4. Šestiboký jehlan

Šestiboký jehlan má obvod 120 cm, délku boční hrany 25 cm.

Vypočítejte v cm3 objem jehlanu. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Objem jehlanu je 5 196,15 cm3

5. Opsaná a vepsaná koule

Krychli o objemu 4 096 cm3 je opsána a vepsána koule.

Vypočítejte, kolikrát je větší objem opsané koule než koule vepsané. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Objem opsané koule je 5,20krát větší než objem koule vepsané.

6. Pravidelný čtyřboký jehlan

Objem pravidelného čtyřbokého jehlanu je 288 dm³. Obvod jeho podstavy je stejně velký jako jeho výška.

Vypočítejte povrch jehlanu. (Výsledek zaokrouhlete na celé dm².)
Řešení
Povrch jehlanu je 326 dm².

7. Pozemek tvaru lichoběžníku

Pozemek tvaru pravoúhlého lichoběžníku má základny dlouhé 102 m a 86 m. Kolmé rameno má délku 63 m.

Vypočítejte
a)   obsah pozemku,
b)   obvod pozemku.
Řešení
a)   Obsah pozemku je 5 922 m2m
b)   obvod pozemku 316 metrů.

8. Pravoúhlý trojúhelník

Délky stran pravoúhlého trojúhelníku tvoří první 3 členy aritmetické posloupnosti. Obsah trojúhelníku je 600 cm2.

Určete délky stran trojúhelníku.
Řešení
Délky stran trojúhelníku podle velikosti jsou 30, 40 a 50.

9. Trojboký hranol

Pravidelný trojboký hranol má délku podstavné hrany a = 6 cm a jeho výška je rovna délce podstavné hrany.

Vypočítejte objem pravidelného trojbokého hranolu. Výsledek zaokrouhlete na dvě desetinná místa.
Řešení
Objem pravidelného trojbokého hranolu je 93,53 cm3.

10. Sestrojení obdélníku

Je dán obdélník ABCD: |AB| = 8 cm a délka úhlopříčky |AC| = 13 cm.

Sestrojte obdélník ABCD.
Řešení

11. Parník a člun

V 6 hodin 30 minut vyplul z přístavu parník plující rychlostí 12 km/hod. Přesně v 10 hodin za ním vyplul motorový člun, který plul konstantní rychlostí 40 km/hod.

Vypočtěte:
a)   v kolik hodin dohonil člun parník,
b)   po kolika kilometrech dohonil člun parník.
Řešení
a)   Člun dohonil parník v 11 hodin
b)   Člun dohonil parník po 60 kilometrech.

12. Pochod z křižovatky

Na křižovatce dvou kolmých cest se rozdělila skupina turistů. Jedna skupina šla rychlostí 5,3 km/h. Druhá skupina 4,1 km/h.

Vypočtěte, kolik kilometrů byly od sebe obě skupiny vzdáleny po 1 h 25 min. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Skupiny turistů byly od sebe vzdáleny 9,49 km.

13. Zkouškové období

200 studentů dělalo zkoušky z češtiny, matematiky a fyziky. 114 studentů složilo zkoušku z češtiny, 50 studentů udělalo zkoušku z matematiky a 41 studentů udělalo zkoušku z fyziky. Zkoušku z češtiny i matematiky udělalo 14 studentů, z matematiky i fyziky 15 studentů a z češtiny i fyziky 11 studentů. Všechny tři zkoušky udělalo 5 studentů.

Vypočítejte, kolik studentů neudělalo ani jednu zkoušku.
Řešení
Ani jednu zkoušku neudělalo 45 studentů.

14. Vychýlená věž

Výška věže je 56 m a vrchol věže se nachází ve výšce 55,86 m.

Určete, o kolik metrů je věž vychýlená. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Věž je vychýlená o 4,03 m.

15. Dětské a volejbalové hřiště

Ve městě se rozhodli, že postaví dětské a volejbalové hřiště. Volejbalové bude mít rozměr 12 m × 18,75 m. Dětská hřiště bude mít tvář čtverce. Plocha obou hřišť bude stejná.

Vypočítejte délku strany dětského hřiště.
Řešení
Délka strany dětského hřiště bude 15 m.

16. Myšlené přirozené číslo

Určete nejmenší přirozené číslo \( x \) takové, že \( 2x \) je druhá mocnina přirozeného čísla a \( 3x \) je třetí mocnina přirozeného čísla.
Řešení
x = 72

17. Obsah trojúhelníku

Je dán trojúhelník ABC. Jeho obvod je 30 cm, přičemž strana a je o 2 cm delší než strana b a o 5 cm kratší než strana c.

Určete obsah trojúhelníku v cm2 a zaokrouhlete na dvě desetinná místa.
Řešení
Obsah trojúhelníku 26,83 cm2

18. Obsah kosočtverce

Obvod kosočtverce, který má délky úhlopříček v poměru 3:4 je 40 cm.

Vypočtěte, kolik cm2 je jeho obsah.
Řešení
Obsah kosočtverce je 96 cm2

19. Odmocnina neznámého čísla

Druhá odmocnina z neznámého čísla se rovná druhé mocnině čísla 2.

Vypočítejte neznámé číslo.
Řešení
Neznámé číslo je 16.

20. Pochodující hlídka

Hlídka měla určený pochodový úhel 13 °. Po ujetí 9 km se úhel změnil na 62 °. Tímto směrem šla hlídka 10 km.

Vypočítejte, jaká je vzdušnou čarou vzdálenost startu a cíle pochodu hlídky. (Zapište na dvě desetinná čísla.)
Řešení
Vzdálenost startu a cíle pochodu byla 17,29 km.
 
12